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N U M E R I C A L  A N A L Y S I S  O F  T H E  A S Y M P T O T I C  

R E P R E S E N T A T I O N  O F  S O L I T A R Y  W A V E S  

E. A. Karabu t  UDC 532.59 

Almost all the published numerical and analytical studies of solitary waves on the surface of  a liquid consider only one 

solution, although a non-uniqueness theorem has been proven recently [1]. A method that allows all the solutions to be 

constructed has been proposed [2]. The essence of  this method is to seek a series solution, in which the terms are found from 

recurrence formulas but the first term remains undetermined. The equation found for the first term can have several solutions. 

Herewerealizethis method numerically, examine branching of the solution, and compareitwiththeworkofprior authors. 

The initial studies [3-6] of a solitary wave on the surface of a liquid gave rise to the soliton topic. Most of the 

solutions are approximations for low-amplitude solitary waves. There are many fewer exact results, including the proof of the 

existence of solitary waves [7, 8], the non-uniqueness of solitary waves for a fixed Froude number [1], and the existence of 

a sharp peak with a 120" vertex angle for a wave of limiting amplitude [9]. The shape of the wave profile, its mass, energy, 

and momentum, etc. are mainly obtained numerically. Two groups of methods are used. The first reduces the problem to 

an integro-differeritial equation and uses a finite-difference solution [10, 11]. The second numerically sums a solution 

represented in the form of a series [12-14]. 

We now examine the plane irrotational steady-state flow of a heavy liquid over a horizontal bottom. The X-axis of 

the Cartesian coordinate system is along the bottom, while the Y-axis is vertical upwards. The origin of  the coordinates is 

located on the bottom, such that the Y-axis passes through the highest point of the free surface (Fig. 1). Here h o is the depth 

of the unperturbed liquid at infinity, u 0 is the velocity of the incoming flow at infinity, g is the acceleration due to gravity, ~o 

is the potential, and ~b is the streamline function. 

The problem of finding the solitary wave, i.e. constructing a flow with a free boundary Y = YI(X), which is satisfied 

by the condition 

lim YI(X) = h 0, 
Ixl ~ | 

depends on a single parameter, for which we can use the Froude number 

u~ > 1 F r -  r 

or the Stokes parameter 0, which can be determined from the equation 

tg0 zt 
Fr~ = --~-, 0 ~< 0 < ~, 

which arises after the initial problem is linearized for the uniform flow problem: YI(X) = h 0 and ~o = uoX. This linearization 

is valid when the free surface differs insignificantly from the unperturbed level and evidently remains locally valid as 
I X I "-" co. In the primary term, 

Y~( X)  - h0exp ( - 0 1 g l / h o ) .  

Low-amplitude solitary waves correspond to the limit 0 --- 0. The Stokes parameter 0* -- 7r/3 corresponds to a solitary 

wave of limiting amplitude. Numerical results [11] show that a Stokes parameter 0"* (O* < 0"* < ~r/2) exists such that there 

is a single wave for 0 < 0 < O*, two waves for 0* < 0 < O**, but no solitary waves for O > O**. It is possible that the non- 
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Fig. 1 

uniqueness shown in [1] is explained by the fact that O is not a unique parameter. If the Froude number is determined by the 

velocity at the apex of the wave, the non-uniqueness vanishes [14]. 
A solitary wave is described by higher approximations of shallow-water theory, which has been derived systematically 

by Friedrichs [15]. The results can be represented by a power series in O 2 (or the amplitude). Based on the first [16], second 
[17], and higher approximations obtained later, it can be assumed that 

y l ( x )  | ) tx 
= 1 + ~ 0 2 / Z  ," 

c a - -  (1) 
2h 0 

Evidently no one has proven why the coefficients of this series should be polynomials in [cosh{0X/2ho}]-2, although this form 
is often used, and efforts are devoted to maximizing the number of terms in this series. This is difficult to do without a 
computer, because the recurrence formulas are very complex. With a computer, solutions to Eq. (1) have been found to 018 

[13], 028 [14], and 034 [12]. If the sums in (1) are transposed, then 

where 

an YI(X) = I + (2)  

/to ,,~1 ( Ox~ ~ '  V-J 2h 0 

% = o (0~ ) .  (3) 

If this series is substituted into the boundary conditions, we obtain recurrence formulas for sequentially finding the coefficients 

an. This was done by Permel and Su [12]; however no solution in the form of (2) was found, because the first coefficient a 1 
remains undetermined. 

The problem is significantly simplified if it is formulated, not in the physical X - Y  plane, in which the free boundary 
is unknown, but in the plane of the complex potential �9 = r + iff. We make the problem dimensionless, by following 
Ovsyannikov [2]: 

h 0 0 
Z = X + i Y =  ~- ( z  + W ( z ) ) ,  z = x + iy = cb. 

hoUo (4) 

The liquid occupies a strip of  width 0 in the plane of the dimensionless complex potential Z. The solitary wave is found by 
solving the following problem: 

Problem 1. Find the function W(z) = A(x,y) + iB(x,y), which is analytic in the strip 

which satisfies the condition 

and the boundary conditions [2]: 

0 < y < 0 ,  --oo < X <  oo, 

lim B (x , y )  = O, A(x,y) --  O ( 1 )  npu I x l  -"  oo 
M " ** 
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By - vB = f (y = O) 

2v2B 2 1 B2 ) 
f -  1 - 2vB ~(B~ + y) ,v  = ctgO ; (5) 

for constant pressure and 

B= 0 ( y =  0). (6) 

for no flow. 

A solution to the nonlinear boundary problem exists, but it is difficult to find (and evidently can only be found 
numerically). Therefore it was suggested that a simpler problem [2] be solved. 

Problem 2. Find the function represented by the asymptotic series 

| z 1 

W ( z )  = E b n f / d ' d z ,  /* - ' - - - ~ 2 ,  Imb = 0, 
o. 0 2/ch / (7) 

which satisfies the boundary condition (5). 
By substituting the series (7) into the boundary condition (5), one can obtain recurrence formulas for sequentially 

finding the coefficients b n. As in (2), the f'trst coefficient b 1 remains undetermined. Here we find b 1 by solving the determining 
equation in [2] numerically. Evidence has been found to support the fact that one of the solutions constructed in this manner 

coincides with (1). 
The higher approximations for shallow water are constructed in the physical plane by deforming the horizontal variable 

X while keeping the vertical variable Y constant [15]. This makes the functions which describe the flow non-analytic. 

Ovsyannikov [2] found a way to formulate the problem in the plane of the complex potential such that the functions remain 

analytic. The X-axis must be deformed by somewhat artificially normalizing (4) so that the strip in the z plane which 
corresponds to the liquid is deformed to a line as O --, 0. The higher approximations of the shallow-water theory are constructed 

by solving the following problem. 
Problem 3. Find the function, represented by the formal power series 

W(z)  = ~ W ~ ( z ) O ~ ,  (8) 
jml 

which satisfies the boundary conditions (5) and (6). 

obtain 
By substituting (8) into the boundary condition, taking the limit 0 --, 0, and collecting like terms in powers of  0, we 

~ - ~" + 9-C~ = 0. 
2 ~ z i 

for 04. The solution to this equation that vanishes at infinity is 

2 2 z 1 
14A z' = ~u, W ~I) = "~th~,/~ - z" 

2oh  2 -  
2 

Analysis of the subsequent coefficients is much simpler here than for (1), and it turns out that all the Wz(i) are polynomials in 

/~. Thus the choice of  the decomposition of (7) can be understood. It is in the same correspondence with (8) as the 

decomposition of (2) is with (1). Now we can forget about the derivation of the series (7) by seeking a solution in the form 
of (7) in the hope that this series also describes other solutions. 

We now examine the imaginary part of  (7). By following Ovsyannikov [2] we obtain 
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where 

B ( x , y )  = 2 b  B, ,(x,y) ,  

1 X(z) 

B(x,y) = Z-~_~Imf(1 - u2)n-idu; 
0 

e z - l s i n y  

Z(z)  - e ~ + 1 - Q + iP; P - chx+ cosy 

(9) 

The functions B n are polynomials in P, whose coefficients in tern are polynomials in w = cot y. 

B 1 = P, 

2 
B 2 = w p  2 + ~1 # ,  

We have 

2n-1 

B 

k=n i = L~ j 

We substitute (9) into (5) and, by using the formulas 

p. = o~p + ~ ,  ~ + ~ = (o~: + 1)e ~, 

we transform the boundary condition into a power series in P. We equate terms for the same power of  P (the first term is an 

identity), and obtain a recurrent chain of formulas for sequentially finding the b n. The coefficient b 1 is undetermined, while 

the others are functions of it: 

b3 = 4 b~ + ( -3v2 + 1)b2' + (~6 8 + ~ b~; (11) 

7 ( 2 1  2 7) 2 (8-Lvl 4 _  6-~v3 2 9) 3 (12) b,=~b,+~-T~ +zb~+( ~6 8 +7gb~ 

1 ( 1 3 5  a 2 6 ! v 6  41 4 19 2 ~-6t  4. 
+5~-7T7-~--i-7 + 8 - ~  + - F " -  b~, 

/ 
. (13 )  

~.(b,) = Z < ~  
k=l 

From (12) it can be seen that b 4 becomes infinite when v 2 = 1/5 or tgO =vr$ .  Moreover, this occurs for an infinite 
number of values of O, which satisfy the equation 

tgmO = mtg0, m ~> 4. (14) 

If we find the value of m for which this equation is satisfied for a given 0, we can then set 

and seek a solution in the form 

b 1 = b 2 = . . .  = b,,,_ t = 0 

B = ~ b , , B ( x , y ) .  
n = m  

6 8 3  



Here b m appears as an undetermined coefficient. 

Following Ovsyannikov [2], we examine the expression 
0 

l i r a  f ( B H  - HB)dx ( H  = c h x  �9 s i n y ) .  

This is bl(0 - sin0.cos0) because of the asymptote B = blP o-I- O(P 2) on one hand; on the other hand it is 
a 

f (H.f),=odx = f (BH - HB).=Jy, 
0 0 

due to Green's formula and the boundary conditions. By examining the limit as a - ,  oo, we have 

ca 

(' 1 G(bl) = ff(x,O)chxdx - b, s-~nO - cos0 = 0, 
0 (15) 

where f is the function in the boundary condition (5). This equation, obtained by Ovsyannikov [2], is not an identity and should 

be satisfied by any solution of  problem 1. Therefore it can be used to fred b 1. 

A numerical solution of the equation G(bl) = 0 must consider the fact that f is not known exactly. It can be 

represented as a series and this series must be truncated. Here the function f is represented as a series in powers of P. By 

truncating this series at the N-th term, we obtain the approximate equation GN(b 1) = 0. The value of b 1 can be found by 

observing how the root of this equation behaves as N --, ~ .  

By substituting (9) into (15) we have the equation 

G(b,) = ~b , , (b , ) f  L :hxdx.  (16) 
n = 2  0 

Here the function 

is a polynomial in P and v: 

-~-B L = ~y . - ~oB 1,~ o 

L 1 ~ / :1 ,2 

La = _19 + 3 + 2/~' 

~ , d  tl 
j = n 

By direct integration, it is not difficult to show that 

f L chxdx = O, n >~ 2. 
0 

Therefore Eq. (16), which can be written more explicitly as 

2n ca 

G(bt) = 2b,,(b~)~d,,fPichxdx =- O, (17) 
n=2 j=n  0 

actually is an identity, which is valid for any b 1. Here the double series is evidently not absolutely convergent, because 

changing the order of  summation, which must be done to obtain GN(bl), transforms the identity into the equation 

| J J 

G( b 0 = f l~chxQ dx ( Q, = ~ g~ ~ rift:). 
: o  ( 

n=max  2,k, 

Here d~ is determined from (13). The first few initial terms are 

Q3=b (-9S+7v 3-1) + b ~ ( 3 v  ~ - v ) ,  
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We also have 

4(135V8 261 0 41 4 19 2 l ~ )  Q =b,(16 + - V - - F '  § 
3{ 27 O 23__V2) 2{21 4 b l [  - ' ~ - v  21v4 _ _ 1 )  + + - + b 1 / -4  v v 2 . 

o* 

fP'chxdx = sin0.K, 
0 
K 2 = 0(v 2 + 1 )  - v; 

K 3 = 0 --~-v -- + 

K 4 0 4 + 3v 2 + 2 6 

Thus, the defining Eq. (15) is represented as a series of polynomials in bl: 

| i 

c(b,) : E E e l ,  �9 
1=2 k= l  

The polynomial coefficients gk are functions of 0. By truncating this series we obtain the approximate defining equation which 

is used here: 
N i 

= Z ECb  = o. 
~=2 k=l (18) 

This equation has N roots. As N increases, more and more of them are unrelated to the problem. First of all, complex 

roots must be discarded (all negative roots can also be discarded, because they correspond to solitary depression waves which 

have been shown not to exist). Of the remaining real roots bt N) , it is necessary to keep only those which satisfy the limit 

limb(l u) = b 1. 
N*aa 

The calculations were done in rational numbers (IBM PC, REDUCE system, with 20 terms in the series) and in 

floating-point arithmetic (high-speed computer with a mantissa of 24 decimal digits, and 70 terms). Because of its weak 

mathematical foundation, the applicability of the algorithm must be verified numerically. The first question is, does a sequence 

of roots {bl ~)} that has a limit exist in general? The answer is shown in Fig. 2, which shows all real roots of (18) in the range 

of - 3  < b I _< 3 for 5 _< N _< 31 and # = 7r/4. It can be seen that at least two sequences of roots exist which tend to a limit. 

The second question which now arises is, does Ovsyannikov's method [2] describe the solution to (1) found earlier? To answer 

this question, values of b 1 obtained by solving Eq. (18) numerically must be compared with values obtained under the 

assumption that b 1 is an analytic function of  02 (or of  t = tan20 = j,-2): 

b~ = ~fl~t*. (19) 
k=l 

In analogy to (3), we require b n = o(tn). By substituting (19) into Eq. (10) for b 2 and by setting terms linear in t to zero, we 

have/31 = 2/3; then by substituting into Eq. (11) for b 3 and equating terms containing t 2 tO zero, we obtain/32 (terms linear 

in t vanish automatically). By continuing in this fashion, we find 

2 2 262t3 6406/4 1661986ts 612601582 "t 6 . . .  
b~ = ~t - -~fl + 405 10125 4- 2679075 1004653125 + (20) 

If  the series (20) is substituted into (9), then the solution corresponds to (1). We note in passing that this method [2] of 

constructing the series is much simpler and cheaper than other algorithms that have been used [12-14]. In a few hours, an IBM 

PC could calculate 20 terms of  the series (20), which exceeds the result obtained in [12]. 

If  (20) is summed for 0 = 7r/4 (Pade summation [18] was used), then b = 0.33. As can be seen from Fig. 2, this 

number corresponds exactly to the smaller value of  b]. The circles in Fig. 3 show all the real roots of  GN(b 1) which lie in 

688 



the interval ( -3 -3)  for N = 15 and 0 _< ~9 < 57r/12. The solid lines show the sum of the series (20). There exists a family 

of roots which lies exactly on this line that starts to diverge from it at/9 = r because the radius of convergence of the series 

(20) is equal to unity. 
We now represent the roots of the equation GN(bl) = 0 in the form of a power series 

The coefficients of this series are expected to be approximately equal to the coefficients of the series (19): 

lim B oN) 
N ~ m  

if N is large enough. Rational-number calculations show that there is an exact solution to the equation/~k(n) = Bk, k = 1, 2, 

. . . ,  N .  

Thus, Ovsyannikov's method [2] describes the solution to (1). However, it also describes other solutions. The roots 

GN(bl) for N = 15 and 20 are shown more precisely in Figs. 4 and 5 than they are in Fig. 3. Many of the roots can be 
discarded because they change with N; only those that do not change should appear in Figs. 4 and 5. The stability of the roots 
that correspond to the sum of the series (20) is immediately apparent. The horseshoe-shaped branches from this family are also 

stable. Evidently the solution branches here. It continues for those values of 0 which satisfy Eq. (14). 

The author thanks academician L. V. Ovsyannikov for the problem formulation and his attention to this effort. 
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